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Abstract

A finite difference scheme of Scharfetter–Gummel type is used to simulate a consistent energy-transport model for elec-
tron transport in semiconductors devices, free of any fitting parameters, formulated on the basis of the maximum entropy
principle.

Simulations of silicon n+–n–n+ diodes, 2D-MESFET and 2D-MOSFET and comparisons with the results obtained by a
direct simulation of the Boltzmann transport equation and with other energy-transport models, known in the literature,
show the validity of the model and the robustness of the numerical scheme.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In today semiconductor technology, the miniaturization of devices is more and more progressing. As a con-
sequence, the simulation of submicron semiconductor devices requires advanced transport models. Because of
the presence of very high and rapidly varying electric fields, phenomena occur which cannot be described by
means of the well-known drift-diffusion models, which do not incorporate energy as a dynamical variable.
That is why some generalization has been sought in order to obtain more physically accurate models, like
energy-transport and hydrodynamical models. The energy transport models which are implemented in com-
mercial simulators are based on phenomenological constitutive equations for the particle flux and energy flux
depending on a set of parameters which are fitted to homogeneous bulk material Monte Carlo simulations.
However, a more satisfactory physical description should be based on relating the parameters appearing in
the constitutive laws to the fundamental scattering properties of electrons with phonons and impurities [1].
In [2–4] a model free of any fitting parameters has been developed for the electron transport in silicon, where
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the parameters appearing in the constitutive laws are directly related to the collision operators of the semiclas-
sical Boltzmann transport equation for electrons in semiconductors. Such a model is based on the maximum
entropy principle (hereafter MEP), takes into account all the relevant scattering mechanisms in Silicon, i.e.
scattering of electrons with acoustic and non-polar phonons and with impurities, and has been formulated also
for non-parabolic bands. The model is represented, apart from the Poisson equation for the electric potential,
by a hyperbolic quasilinear system of balance law. In [4], it has been shown that it is possible to recover an
energy-transport limiting model which is equivalent in the stationary case to the original one, at least for
smooth solutions.

This energy-transport model (hereafter MEP ET model) model has been tested in [5] both in one-dimen-
sional problems, like n+–n–n+ diodes, and 2D problems, like a 2D MESFET and MOSFET, by using for
the numerical integration a mixed finite element scheme [6,7] based on the lowest order Raviart–Thomas ele-
ments. This required the formulation of the model in terms of the dual entropy variables, that give rise to cou-
pled nonlinear discretized equations whose numerical treatment must be done with great accuracy. In
particular the choice of the mesh is crucial for the convergence of the scheme.

Here we formulate a numerical scheme suited for the MEP ET model which is based on an exponential
fitting like that employed in the Scharfetter–Gummel scheme for the drift-diffusion model of semiconductors.
The basic idea is to split the particle and energy density currents as the sum of two terms. Each of them is
written by introducing suitable mean mobilities in order to get expressions of the currents similar to those aris-
ing in other energy-transport models known in the literature [8–12]. The original variables (density, energy and
electric field) are used and a simple explicit discretization in time proves satisfactorily efficient avoiding the
problem related to the high nonlinear coupling of the discretized equations of [5]. In fact as explained in detail
in Section 3, the CFL condition on the time step, even if of parabolic type, is not very restrictive for reasonable
meshes. The computational effort is comparable with that of the schemes in [5], retaining the same accuracy of
the solution.

The method is very stable and robust and guarantees a good numerical current conservation.
A comparison with direct simulations of the Boltzmann equations for electron transport in semiconductors

confirms the results obtained in [5] that the MEP one gives results that are more accurate with respect to the
standard energy-transport models, usually employed in commercial simulators.

The numerical discretization of energy-transport models is itself an active area of research (the interested
reader is referred to [13] for a complete review). A finite difference scheme based on a Scharfetter type discret-
ization has been used in [14]. Finite difference schemes with entropy-decaying property have used in [15], while
compact scheme of fourth-order have been employed in [16]. In [17] a mixed finite-volume techniques have
been used. Apart the above mentioned article [6,7], other schemes based on the mixed finite elements have
been used in [18,19]. They are based on the finite elements proposed in [20]. In [21] an adaptive formulation
has been also given. The above mentioned schemes have been applied to the standard energy-transport known
in the literature. Their application to the MEP energy-transport model requires major modification and it is an
open problem.

The paper is organized as follows. In Section 2 we give a brief presentation of the model. In Section 3 the
model is reformulated in terms of average mobilities and the numerical scheme is presented. In the remaining
sections the validity of the model and robustness of the scheme is shown by simulating first a one-dimensional
n+–n–n+ silicon diode and then, in the last two sections, a silicon MESFET and MOSFET in the two-dimen-
sional case.

2. The MEP energy-transport model in the Kane dipersion relation case

In this section we give a sketch of the energy-transport model based on MEP. For more details the inter-
ested reader is referred to [2–4].

One assumes that the conduction band is described around each minimum (valley) by the Kane dispersion
relation approximation
EðkÞ½1þ aEðkÞ� ¼ �h2k2

2m�
; k 2 R3; ð1Þ
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where E is the electron energy, m* is the effective electron mass, �hk is the crystal momentum, �h is the Planck
constant divided by 2p and a is the non-parabolicity factor (a = 0.5 eV�1 for Silicon).

The energy-transport model, obtained for silicon semiconductor in [4,22] starting from the hydrodynamical
model based on the maximum entropy principle [2,3], is given by the following set of balance equations for the
electron density n and energy W, coupled to the Poisson equation for the electric potential /
on
ot
þ divðnVÞ ¼ 0; ð2Þ

oðnW Þ
ot
þ divðnSÞ � nqV � r/ ¼ nCW ; ð3Þ

divð�r/Þ ¼ �qðN D � NA � nÞ; ð4Þ
where ND and NA are the donor and acceptor densities respectively, q is the (positive) elementary charge, � is
the dielectric constant while div and $ are the divergence and gradient operators.

The evolution equations are closed with the constitutive relations for the velocity V and the energy-flux S
V ¼ D11ðW Þr log nþ D12ðW ÞrW þ D13ðW Þr/; ð5Þ
S ¼ D21ðW Þr log nþ D22ðW ÞrW þ D23ðW Þr/: ð6Þ
The elements of the diffusion matrix D = (Dij) read
D11 ¼
c22U � c12F

c11c22 � c12c21

; D12 ¼
c22U 0 � c12F 0

c11c22 � c12c21

; D13 ¼ �q
c22 � c12G

c11c22 � c12c21

;

D21 ¼
c11F � c21U

c11c22 � c12c21

; D22 ¼
c11F 0 � c21U 0

c11c22 � c12c21

; D23 ¼ q
c21 � c11Gð0Þ

c11c22 � c12c21

:

All the coefficients cij and the functions U, F, G depend on the energy W. The prime denotes derivative with
respect to W.

The energy production term has a relaxation form CW ¼ �W�W 0

sW
where sW is the energy relaxation time,

which depends also on W, and W0 = 3/2kBTL is the energy at equilibrium, with TL the lattice temperature,
here assumed to be constant.

The expressions of U, F, G, CW, cij, Dij have been obtained in [2,3] both for parabolic band and Kane’s
dispersion relation. In the case that the conduction energy bands of electrons are described by the Kane dis-
persion relation, the expressions of U, F, G CW, cij, Dij require a numerical evaluation of some integrals. These
computations have been done in [2,3] and, in order to improve the efficiency of the simulation code, numerical
tables have created for U, F, G CW, cij, Dij. In the code from the discrete data the values of interest are
obtained by interpolation with splines. The integral expression of U, F, G CW, cij, Dij is reported for the sake
of completeness in Appendix A along with the values of the physical parameters used in the simulations.

Here we report an important relation which will be of crucial importance in the sequel

Proposition 1
U ¼ 1

kW ; F ¼ G

kW
where kW is the Lagrangian multiplier relative to the energy.

Remark. kW enters in the derivation of the model (the interested reader is referred to [23] and references
therein). Its thermodynamical meaning is linked with the definition of non-equilibrium temperature T accord-
ing to statistical mechanics
kW ¼ 1

kBT
;

where kB is the Boltzmann constant.
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The results we get with the MEP energy-transport model will be compared with those obtained by a deter-
ministic simulation of the Boltzmann transport equations [24], the Stratton classical energy-transport model,
which is employed in several commercial simulators, and the standard drift-diffusion one. Other energy-trans-
port models have been also proposed [8,10–12] but as proved in [5] a comparison with Monte Carlo data
shows that the Stratton one gives the best results.

For the sake of completeness we report also Stratton’s energy-transport and drift-diffusion models in order
to fix expression of the free parameters and function as mobilities and energy relaxation time.

In the Stratton model the energy is related to the electron absolute temperature T by the monatomic gas
equation of state
W ¼ 3

2
kBT ;
while fluxes and energy relaxation time are given by
CW ¼ �
3
2
ðkBT � kBT LÞ

sW
; ð7Þ

nV ¼ �~l0 rn� en
kBT
r/

� �
; ð8Þ

nS ¼ � 3

2
~l0 rðkBnT Þ � enr/½ �; ð9Þ
where ~l0 ¼ l0kBT L

e . l0 is the low-field mobility and sW the energy relaxation time, usually taken as a constant.
In the simulations we set sW = 0.4 ps, and l0 = 1400 cm2/V s that are the values more currently used in the

literature [8–11].
From a theoretical point of view we remark that, apart the MEP model, all the other ones uses among the

fundamental variables the absolute temperature T. This requires the knowledge on an equation of state
relating T to the energy W and it is one of the more controversial question in non-equilibrium thermodynam-
ics. W has a clear meaning at kinetic level as moment of the electron distribution function with respect to the
weight function given by the electron microscopic energy [23], but only for parabolic band, neglecting the qua-
dratic terms, the relation W ¼ 3

2
kBT is sound in analogy with monatomic gases. In the non-parabolic case, e.g.

when the Kane dispersion relation is used, the equation of state relating T and W is given only implicitly as
will be seen in the next section. This casts serious doubts on the appropriateness of the standard formulation
of the energy-transport models which is not naturally generalizable to the non-parabolic case.

At last we report also the standard drift-diffusion model
on
ot
þ divðnVÞ ¼ 0; ð10Þ

J ¼ �Dnrnþ lnr/ ð11Þ
with Dn diffusion coefficient and ln field-depend mobility.
We assume the validity of the Einstein relation
Dn ¼ ln
kBT 0

e
:

and use for the mobility the Caughey–Thomas formula [30]
ln ¼ l0 1þ l0jEj
vs

� �2
" #�1=2

;

where the previous values of l0 is used for consistency while vs is taken as 107 cm/s.

3. The numerical method

First we rewrite the current density J = nV and the energy-flux density H = nS given by
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J ¼ D11ðW Þrnþ nD12ðW ÞrW þ nD13ðW Þr/; ð12Þ
H ¼ D21ðW Þrnþ nD22ðW ÞrW þ nD23ðW Þr/ ð13Þ
as
J ¼ Jð1Þ � Jð2Þ; H ¼ Hð1Þ �Hð2Þ; ð14Þ

where
Jð1Þ ¼ c22

D
½rðnUÞ � qnkW Ur/�; Jð2Þ ¼ c12

D
½rðnF Þ � qnkW Fr/�; ð15Þ

Hð1Þ ¼ c11

D
½rðnF Þ � qnkW Fr/�; Hð2Þ ¼ c12

D
½rðnUÞ � qnkW Ur/� ð16Þ
with D = c11c22 � c12c21.
The basic idea is to introduce suitable average mobilities that are constant in each cell so that J(i) and H(i),

i = 1, 2, can be expressed by means of local Slotboom variables.
For the sake of clarity first we treat the one-dimensional case and then present the discretization in the two-

dimensional case.

3.1. Discretization in one space dimension

Let us suppose that the equations are definite on the real interval [0,L], with L > 0 the length of the device,
and introduce the grid point 0 = x0 < x1 < � � �xi < � � �xN�1 < xN = L, with N a positive integer. For simplicity
we assume a uniform grid so xi = i h with h = L/N, and uniform time steps. Moreover we set Ii+1/2 = [xi,xi+1]
and xi±1/2 = xi ± h/2. In the sequel the notation ul

i will indicate the value of the variable u(x,t) for x = xi and
t = lDt, l being a positive integer.

By replacing the partial derivatives with finite differences, the balance equations (2)–(4) can be discretized as
nlþ1
i � nl

i

Dt
þ J iþ1=2 � J i�1=2

h
þOðh2;DtÞ ¼ 0; ð17Þ

ðnW Þlþ1
i � ðnW Þli

Dt
þ H iþ1=2 � H i�1=2

h
� q

J iþ1=2 þ J i�1=2

2

/iþ1 � /i�1

2h

þ 3

2
ni

W i � W 0

ðsW Þi
þOðh2;DtÞ ¼ 0; ð18Þ

1

h2
ð/iþ1 � 2/i þ /i�1Þ þ

q
�
ðCi � niÞ þOðh2Þ ¼ 0; ð19Þ
where Ci = ND(xi) � NA(xi). The variables with no temporal index must be considered evaluated at the time
step t = lDt. We remark that the discretization of Eq. (19) is valid for constant �. It is straightforward to take
into account a space dependent �.

In order to complete the numerical scheme we must evaluate the current Ji+1/2 and Hi+1/2.
We approximate the electric potential / by piece-wise linear function in each Ii+1/2
/ðxÞ ’ /i þ ðx� xiÞ/iþ1; x 2 I iþ1=2
and cij(W) by functions that are constant on each interval Ii+1/2. This enable us to introduce the local mobil-
ities, similar to those employed for other energy-transport models (see [13,25])
g11 ¼ �
c22

D
; g12 ¼ �

c12

D
; ð20Þ

g21 ¼ �
c11

D
; g21 ¼ �

c12

D
ð21Þ
and write the significant components of J(i) and H(i) as
J ðiÞ ’ � og1i

ox
þ qkW g1i

o/
ox
; ð22Þ
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H ðiÞ ’ � og2i

ox
þ qkW g2i

o/
ox
; ð23Þ
where kW is the cell mean value of kW, we approximate as
kW ’ 1

2
kW ðW iÞ þ kW ðW iþ1Þ
� �

: ð24Þ
After introducing UT = 1/qkW, which plays the role of a thermal potential, and indicating by U T its constant
approximation in each cell Ii+1/2, it is possible to define the local Slotboom variables
skr ¼ expð�/=U T Þgkr
that satisfy
os1r

ox
’ � expð�/=U T ÞJ ðrÞ; ð25Þ

os2r

ox
’ � expð�/=U T ÞH ðrÞ: ð26Þ
In each cell Ii+1/2 we can express J(r) as a Taylor expansion
J ðrÞðxÞ ¼ J ðrÞiþ1=2 þ ðx� xiþ1=2Þ
oJ ðrÞ

ox

� �
xiþ1=2

þOðh2Þ: ð27Þ
By integrating (25) and (26) over Ii+1/2 we find up to O(h2)
ðs1rÞiþ1 � ðs1rÞi ¼ �
Z xiþ1

xi

expð�/=U T ÞJ ðrÞiþ1=2 dx:
By taking into account that /(x) is linear in I ðrÞiþ1=2, the last integral can be evaluated, obtaining
J ðrÞiþ1=2 ¼
/iþ1 � /i

U T
ðe�/iþ1=UT � e�/iþ1=UT Þ�1
which, after some elementary algebra can be written as
J ðrÞiþ1=2 ¼ �z coth z
ðg1rÞiþ1 � ðg1rÞi

h
þ z
ðg1rÞiþ1 þ ðg1rÞi

h
; r ¼ 1; 2 ð28Þ
with z ¼ /iþ1�/i

2UT
. If z = 0, that is if /i+1 = /i, the previous expression remains valid provided that zcoth z is re-

placed with the limit as z ´ 0 which is equal to one.
Similarly for the energy density current one finds
H ðrÞiþ1=2 ¼ �z coth z
ðg2rÞiþ1 � ðg2rÞi

h
þ z
ðg2rÞiþ1 þ ðg2rÞi

h
; r ¼ 1; 2: ð29Þ
Formulas (28) and (29) are nonlinear exponential fittings similar to that introduced by Scharfetter and Gum-
mel for the drift-diffusion equations (see [26]).

The complete numerical scheme is summarized below
nlþ1
i ¼ nl

i � Dt
J iþ1=2 � J i�1=2

h
¼ 0; ð30Þ

ðnW Þlþ1
i ¼ ðnW Þli � Dt

H iþ1=2 � H i�1=2

h
� q

J iþ1=2 þ J i�1=2

2

V iþ1 � V i�1

2h
þ 3

2
ni

W i � W 0

ðsW Þi

� �
; ð31Þ

1

h2
/iþ1 � 2/i þ /i�1

� 	
þ q
�
ðCi � niÞ ¼ 0; ð32Þ

J iþ1=2 ¼ J ð1Þiþ1=2 � J ð2Þiþ1=2; Hiþ1=2 ¼ H ð1Þiþ1=2 � H ð2Þiþ1=2; ð33Þ

J ðrÞiþ1=2 ¼ �z coth z
ðg1rÞiþ1 � ðg1rÞi

h
þ z
ðg1rÞiþ1 þ ðg1rÞi

h
; r ¼ 1; 2; ð34Þ
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H ðrÞiþ1=2 ¼ �z coth z
ðg2rÞiþ1 � ðg2rÞi

h
þ z
ðg2rÞiþ1 þ ðg2rÞi

h
; r ¼ 1; 2 ð35Þ
supplemented with a CFL condition Dt/(Dx)2 < c, where c is a suitable positive constant.

Remark. The theoretical value of the constant c is difficult to obtain in an explicit way. Estimations have been
obtained with numerical experiments, but a rough idea of the numerical value of c can be deduced from the
drift-diffusion limit model (10) in the linear approximation where the classical parabolic condition
DnDt

ðDxÞ2
<

1

2

holds.

If we express the time in picoseconds and the length in lm, for a mesh of 100 points in a device of 0.1 lm,
one has in such units Dx = 10�3 and the CFL condition reads
Dt < 0:138� 10�3 ¼ 0:138Dx
(we recall that Dn ¼ l0kBT L

3
and set l0 = 1400 cm2/V s and kBT/e = 0.0259 eV). Therefore for grids which are

not too fine, practically the CFL condition is as that of hyperbolic type. Since the two diffusion coefficients
in the energy-transport model are of the same order of Dn, this justifies the efficiency of the simple explicit
scheme in time.

The following proposition gives an estimate of the truncation error for smooth solutions.

Proposition 2. The leading truncation errors R1 and R2 in Eqs. (30) and (31), respectively, satisfy for sufficiently

regular solutions the estimates
jR1j 6 Oðh2Þmax
x2½0;L�

o3J
ox3










þOðDtÞ; ð36Þ

jR2j 6 Oðh2Þmax max
x2½0;L�

o2J
ox2










;max

x2½0;L�

o3H
ox3










; q� max

x2½0;L�

o

ox
ðn� CÞ












� �
þOðDtÞ; ð37Þ
where O(h2) is a positive term of second order in h and O(Dt) a positive term of first order in Dt.

Proof. The estimates are consequence of the elementary relations
J ðrÞiþ1=2 þ J ðrÞi�1=2

2
¼ J ðrÞðxiÞ þ

1

8
h2 o2J ðrÞ

ox2

� �
xi

þOðh3Þ;

/iþ1 � /i�1

2h
¼ �EðxiÞ �

1

6
h2 o2E

ox2

� �
xi

þOðh3Þ
and the more accurate approximations
J ðrÞiþ1=2 ¼ �z coth z
ðg1rÞiþ1 � ðg1rÞi

h
þ z
ðg1rÞiþ1 þ ðg1rÞi

h
þOðh2Þ o2J ðrÞ

ox2

� �
xiþ1=2

; r ¼ 1; 2;

H ðrÞiþ1=2 ¼ �z coth z
ðg2rÞiþ1 � ðg2rÞi

h
þ z
ðg2rÞiþ1 þ ðg2rÞi

h
þOðh2Þ o

2H ðrÞ

ox2

� �
xiþ1=2

; r ¼ 1; 2: �
3.2. Discretization in two space dimension

The previous scheme can be generalized in order to deal with two-dimensional space problems. We intro-
duce the grid points (xi,yj) with xi+1 � xi = h = constant and yj+1 � yj = k = constant, and the middle points
(xi,yj±1/2) = (xi,yj ± k/2) and (xi±1/2,yj) = (xi ± h/2,yj). A uniform time step Dt is used and we set
ul

i;j ¼ uðxi; yj; lDtÞ as in the one space dimension.
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By indicating with Jx and Jy the x- and y-component of the current density J and by Hx and Hy the x- and
y-component of H, we discretized the balance equations (2)–(4) in the bidimensional case as
Fig. 1.
points
nlþ1
i � nl

i

Dt
þ
ðJ xÞiþ1=2;j � ðJ xÞi�1=2;j

h
þ
ðJ yÞi;jþ1=2 � ðJ yÞi;j�1=2

k
þOðh2; k2;DtÞ ¼ 0; ð38Þ

ðnW Þlþ1
i � ðnW Þli

Dt
þ
ðH xÞiþ1=2;j � ðH xÞi�1=2;j

h
þ
ðH yÞi;jþ1=2 � ðH yÞi;j�1=2

k

� q
ðJ xÞiþ1=2;j þ ðJ xÞi�1=2;j

2

/iþ1;j � /i�1;j

2h
� q
ðJ yÞi;jþ1=2 þ ðJ yÞi;j�1=2

2

/i;jþ1 � /i;j�1

2k

þ 3

2
ni;j

W i;j � W 0

ðsW Þi;j
þOðh2; k2;DtÞ ¼ 0; ð39Þ

1

h2
/iþ1;j � 2/i;j þ /i�1;j

� 	
þ 1

k2
/i;jþ1 � 2/i;j þ /i;j�1

� 	
þ q
�
ðCi;j � ni;jÞ þOðh2; k2Þ ¼ 0: ð40Þ
The variables without temporal index must be considered evaluated at time level l.
Again we need the values of the components of the currents in the middle points. Let us introduce the sets

(see Fig. 1)
I iþ1=2;j ¼ ½xi; xiþ1� � ½yj�1=2; yi;jþ1=2�; I i;jþ1=2 ¼ ½xi�1=2; xiþ1=2� � ½yj; yjþ1�
and expand J ðrÞx , r = 1, 2, in Taylor’s series in Ii+1/2,j
J ðrÞx ðx; yÞ ¼ ðJ ðrÞx Þiþ1=2;j þ ðx� xiþ1=2Þ
oJ ðrÞx

ox

� �
iþ1=2;j

þ ðy � yjÞ
oJ ðrÞx

oy

� �
iþ1=2;j

þOðDx;DyÞ
and J ðrÞy , r = 1, 2, in Taylor’s series in Ii,j+1/2
J ðrÞy ðx; yÞ ¼ ðJ ðrÞy Þi;jþ1=2 þ ðx� xiÞ
oJ ðrÞy

ox

 !
i;jþ1=2

þ ðy � yjþ1=2Þ
oJ ðrÞy

oy

 !
i;jþ1=2

þOðDx;DyÞ:
In terms of the Slotboom variables one can write
rs1r ’ � expð�/=U T ÞJðrÞ; rs2r ’ � expð�/=U T ÞHðrÞ; r ¼ 1; 2: ð41Þ

From the x-component of (41)1, one has
Stencil for the evaluation of the currents. On the left the set Ii+1/2,j, on the right the set Ii,j+1/2. The currents are evaluated at the grid
denoted with *.
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os1rðx; yjÞ
ox

’ � expð�/=U T ÞJ ðrÞx ðx; yjÞ

¼ � expð�/=U T Þ ðJ ðrÞx Þiþ1=2;j þ ðx� xiþ1=2Þ
oJ ðrÞx

ox

� �
iþ1=2;j

þOðDx;DyÞ
( )

; ð42Þ
which, after integration over [xi, xi+1] and some algebra similar to that of the one space dimensional case, gives
ðJ ðrÞx Þiþ1=2;j ¼ �ziþ1=2;j coth ziþ1=2;j

ðg1rÞiþ1;j � ðg1rÞi;j
h

þ ziþ1=2;j

ðg1rÞiþ1;j þ ðg1rÞi;j
h

; r ¼ 1; 2; ð43Þ
where ziþ1=2;j ¼
/iþ1;j�/i;j

2UT
.

Likewise by evaluating the y-component of (41)2 and integrating over [yj, yj+1] we find
ðJ ðrÞy Þi;jþ1=2 ¼ �zi;jþ1=2 coth zi;jþ1=2

ðg1rÞi;jþ1 � ðg1rÞi;j
k

þ zi;jþ1=2

ðg1rÞi;jþ1 þ ðg1rÞi;j
k

; r ¼ 1; 2; ð44Þ
where zi;jþ1=2 ¼
/i;jþ1�/i;j

2UT
. With the same procedure the following discrete expression for the components of the

energy flux are obtained:
ðH ðrÞx Þiþ1=2;j ¼ �ziþ1=2;j coth ziþ1=2;j

ðg2rÞiþ1;j � ðg2rÞi;j
h

þ ziþ1=2;j

ðg2rÞiþ1;j þ ðg2rÞi;j
h

; ð45Þ

ðH ðrÞy Þi;jþ1=2 ¼ �zi;jþ1=2 coth zi;jþ1=2

ðg2rÞi;jþ1 � ðg2rÞi;j
k

þ zi;jþ1=2

ðg2rÞi;jþ1 þ ðg2rÞi;j
k

; r ¼ 1; 2: ð46Þ
The error in formulas (43)–(46) is O(h,k).

Remark. In the bidimensional case the discretization of the Poisson equation leads to a linear algebraic system
whose structure depends on the specific boundary conditions one is dealing with. Some standard methods can
be used (e.g. see [27]), but an accurate treatment is needed to achieve a good convergence rate. A practical
alternative is to use a false transient method which consists in replacing the original Poisson equation with the
time dependent one
/t � divð�r/Þ ¼ qðND � N A � nÞ: ð47Þ

The solution of (47) as t ´ +1 is the same as that of the original Poisson equation, at least in the smooth
case.

If we introduce a time step Dt̂ e set /r
ij ¼ /ðxi; yj; rDt̂Þ, (47) can be discretized in an explicit way as
/rþ1
ij ¼ /r

ij þ �Dt̂
1

h2
ð/iþ1;j � 2/i;j þ /i�1;jÞ þ

1

k2
ð/i;jþ1 � 2/i;j þ /i;j�1Þ þ qðCi;j � ni;jÞ

� �
ð48Þ
with the notable advantage to take easily into account the different types of boundary conditions, that will be
considered in more detail in the next sections. The price to pay is that at each time step, we need to reach the
stationary state of (47) by using a time step satisfying the CFL condition, usual for parabolic equations,
Dt̂ 6
1

2

1
1
h2 þ 1

k2

:

However the computational effort is comparable with that required by direct methods.
4. Simulation of a n+–n–n+ silicon diode

We start to test the numerical validity of our scheme with problems in one space dimension, simulating a
ballistic n+–n–n+ silicon diode. The n+ regions are 0.1 lm long with a doping density of 1018 cm�3, the doping
density in n-region is 1016 cm�3, the applied voltage is 1 V while the channel has different lengths: 0.2, 0.05 and
0.025 lm. These cases are challenging tests because quantum corrections should be still negligible [28] and a
semiclassical transport description still accurate. Moreover it is important to observe that several quantum
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macroscopic models, e.g. the quantum drift-diffusion or energy-transport ones, are obtained by adding addi-
tional terms to the classical counterpart. Therefore this latter must be already accurate at a semiclassical level.

As boundary conditions we impose, as usual for ohmic contacts, that the density equals the doping and set
the voltage equal to zero and to the bias voltage in the right and left boundaries, respectively. Concerning the
energy we do not require that it assumes the equilibrium value, but impose homogeneous Newmann condition
at the edges of the devices because this choice leads to results in better agreement with a direct integration of
the Boltzmann equation.

The first case is that with the channel 0.2 lm long. The stationary regime is reached after about 5 ps. Since
high nonlinearities are present in the scheme, the effective spacial order of convergence can be determined only
numerically. To this end meshes with 48, 96, 192 and 384 cells have been considered. By denoting with uðAÞi ,
A = 1, 2, 3, 4 the numerical values of the generic variable u at the grid point i, obtained with 48, 96, 192 and
384 cells at the stationary regime, the order of convergence p, estimated as
Table
Order

Meshe

48, 96,
96, 192

Fig. 2
contin
1

log 2
log
knðAÞi � nðAþ2Þ

i k1
knðAþ1Þ

i � nðAþ2Þ
i k1
has been reported in Table 1. For each variable (density, energy and potential) two estimation of p are indi-
cated: one by comparing the solutions with 48, 96 and 192 grid points, the other by comparing the solutions
with 96, 192 and 384 grid points. Although a full second-order accuracy is not reached, the scheme is robust
and guarantees a superlinear convergence rate whose mean value is about 1.5.
1
of convergence for each variable, by comparing several meshes

s Density Energy Potential

192 1.3716 1.5050 1.4398
, 384 1.5899 1.5572 1.5212

. Stationary solution for the density (1017 cm�3) in the diode with LC = 0.2 lm. The stars are the Boltzmann solution, the
uous line is the MEP model, the dashed and dashed-dotted lines are the Stratton and drift-diffusion models respectively.



Fig. 3. Stationary solution for the electron velocity (107 cm/s) in the diode with LC = 0.2 lm. The notation is as in Fig. 2.

Fig. 4. Stationary solution for the electron energy (eV) in the diode with LC = 0.2 lm. The notation is as in Fig. 2. The result with the
drift-diffusion model is omitted because the energy is kept at equilibrium.
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Fig. 5. Stationary solution for the current (A/cm2) in the diode with LC = 0.2 lm. The notation is as in Fig. 2.

450 V. Romano / Journal of Computational Physics 221 (2007) 439–468
In the sequel of this section only the grid with 96 points will be used because the results are already accurate
enough. In particular the current is well conserved even across the junctions (see Fig. 5).

Concerning the validity of the model we have performed a comparison of the results obtained with the
MEP and Stratton energy-transport model, the drift-diffusion model and a direct simulation of the Boltzmann
transport equation [24]. The results are collected in the Figs. 2–16 for channel length of 0.05 and 0.025 lm.

The MEP model is more accurate than the Stratton one while the drift-diffusion model is not bad, although
the energy is kept at the equilibrium value. The mean error of the Stratton model is roughly twice that of the
MEP model.

The drift-diffusion is, apart the energy, still competitive, if one is not interested in thermal effects. It gives a
poor description of velocity and density in the channel, especially in the shorter devices, but predicts values of
currents with an error comparable with that present in the MEP model. Of course the use of the drift-diffusion
for devices as MOSFETs, where it is crucial the electron dynamics in the channel, is very dubious.

5. Simulation of a 2D silicon MESFET

In this section we check the validity and efficiency of the numerical method by simulating a bidimensional
metal semiconductor field effect transistor (MESFET) with the MEP model. Also in this case the other models
are less accurate of the MEP one, as shown for example in [5].

The shape of the device is pictured in Fig. 17. The device has a 0.4 lm channel. The source and drain depths
are 0.1 lm and the contact at the gate is 0.2 lm. The distance between the gate and the other two contacts is
0.1 lm. The lateral subdiffusion of the source and the drain region is about 0.05 lm. The same doping con-
centration as in [29] is considered
nDðxÞ � nAðxÞ ¼
nþ ¼ 3� 1017 cm�3 in the nþ regions;

n� ¼ 1017 cm�3 in the n region

(

with abrupt junctions.



Fig. 7. Stationary solution for the density (1017 cm�3) in the diode with LC = 0.05 lm. The notation is as in Fig. 2.

Fig. 6. Stationary solution for the electric field (V/lm) in the diode with LC = 0.2 lm. The notation is as in Fig. 2.
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Fig. 8. Stationary solution for the electron velocity (107 cm/s) in the diode with LC = 0.05 lm. The notation is as in Fig. 2.

Fig. 9. Stationary solution for the electron energy (eV) in the diode with LC = 0.05 lm. The notation is as in Fig. 2. The result with the
drift-diffusion model is omitted because the energy is kept at equilibrium.
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Fig. 10. Stationary solution for the current (A/cm2) in the diode with LC = 0.05 lm. The notation is as in Fig. 2.

Fig. 11. Stationary solution for the electric field (V/lm) in the diode with LC = 0.05 lm. The notation is as in Fig. 2.
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Fig. 12. Stationary solution for the density (1017 cm�3) in the diode with LC = 0.025 lm. The notation is as in Fig. 2.

Fig. 13. Stationary solution for the electron velocity (107 cm/s) in the diode with LC = 0.025 lm. The notation is as in Fig. 2.
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Fig. 14. Stationary solution for the electron energy (eV) in the diode with LC = 0.025 lm. The notation is as in Fig. 2. The results with the
drift-diffusion model are omitted.

Fig. 15. Stationary solution for the current (A/cm2) in the diode with LC = 0.025 lm. The notation is as in Fig. 2.
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Fig. 16. Stationary solution for the electric field (V/lm) in the diode with LC = 0.025 lm. The notation is as in Fig. 2.
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We take a reference frame with axes parallel to the edges of the device. The numerical domain representing
the MESFET is
X ¼ ½0; 0:6� � ½0; 0:2�;

where the unit length is in lm.

The regions of high doping n+ are the subset
½0; 0:1� � ½0:15; 0:2� [ ½0:5; 0:6� � ½0:15; 0:2�:

We denote by CD that part of oX, the boundary of X, which represents the source, gate and drain
CD ¼ fðx; yÞ : y ¼ 0:2; 0 6 x 6 0:1; 0:2 6 x 6 0:4; 0:5 6 x 6 0:6g:
Fig. 17. Schematic representation of a bidimensional MESFET.



The other part of oX is labelled as CN. The boundary conditions are assigned as follows. We have ohmic con-
tacts at source and drain:
n ¼ nþ; W ¼ 3

2
kBT L; U ¼

Ub at drain;

0 at source:

�
ð49Þ
On the gate we have a Schottky contact
n ¼ ng; W ¼ 3

2
kBT L; U ¼ Ug: ð50Þ
Indeed the potential at the contacts should include the built-in potential and the density at the gate should
be related to the potential. Here we do not enter into the details of the modelling of the Schottky contacts (see
for example [30]) and, by using the invariance of the electric field with respect to change of the potential with
respect additive constants, set
ng ¼ 3:9� 105 cm�3; Ug ¼ �0:8 V:
In the remaining part CN of the boundary we have
m � rn ¼ 0; m � rW ¼ 0; m � r/ ¼ 0; i ¼ 1; 2: ð51Þ

Here $ is the bidimensional gradient operator while m is the unit outward normal vector to oX in the consid-
ered points.

We remark that the boundary conditions for the MEP energy-transport model are more clear than the anal-
ogous ones for the full hydrodynamical model wherefrom it is derived (see [22]).

Two cases are considered: Ub = 1.5 V and Ub = 2 V. In both situations the stationary solution is reached
after about 5 ps.

The stationary value of density, energy, components of the electric field and potential are plotted in Figs.
18–22. There is the typical depletion region close to the gate with the presence of steep gradients which are
numerically well described.
Fig.11. Stationary solutionforthe electron density (cm�3)inMESFET forUb

=2V.V.Romano /Journal ofComputational Physics 221 (2007) 439–468457



Fig. 19. Stationary solution for the electron energy (eV) in MESFET for Ub = 2 V.

F i g . 2 0 . S t a t i o n a r y s o l u t i o n f o r t h e x - c o m p o n e n t o f t h e e l e c
On account of the mixed boundary conditions, the solution has a loss of regularity at the edges of drain and
source according to [31]. The scheme developed in the previous section furnishes the component of the current
along the direction orthogonal to the contacts in the middle points of the grid as shown in Fig. 1. By taking
into account that the longitudinal component of J is zero at contacts as consequence of the boundary condi-
tions, a simple approximation of the significant component of the current at the contacts can be obtained with
t r i c fi e l d ( V / l m ) i n M E S F E T f o r U b = 2 V. 4 5 8 V . R o m a n o / J o u r n a l o f C o m p u t a t i o n a l P h y s i c s 2 2 1 ( 2 0 0 7 ) 4 3 9 – 4 6 8



Fig. 21. Stationary solution for the y-component of the electric field (V/lm) in MESFET for Ub = 2 V.
J ðrÞi;jc
¼ �
ðg1rÞi;jcþ1 � ðg1rÞi;jc

k
þ qkW ðg1rÞi;jc

/i;jcþ1 � /i;jc

k
þOðkÞ; r ¼ 1; 2; ð52Þ
where we have denoted with (i, jc), i = ia, . . . , ib, the indexes of the grid points at the contacts.



Table 2
Absolute value of current (A/lm) at source (Is), gate (Ig) and drain (Id) for some values of Ub and Ug

Ub (V) Ug (V) Is Ig Id

1.5 �.8000 �1.573 .03009 1.586
2.0 �.8000 �1.677 .0091 1.680
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The loss of regularity of the solution produces a considerable difference between the absolute value of the
current at drain and source. To overcome this problem we approximate the currents at the contacts through
their values at the middle points
J ðrÞi;jc
¼ J ðrÞi;jcþ1=2 þOðkÞ; r ¼ 1; 2 ð53Þ
operating a sort of numerical regularization from the interior. The error is of the order of the mesh size as in
(52) but the problem related to the presence of huge gradients is avoided. With this approach a good charge
conservation is obtained, as shown by the results of Table 2.

6. Simulation of a 2D silicon MOSFET

In this section we check the validity and efficiency of the numerical method by simulating a bidimensional
metal oxide semiconductor field effect transistor (MOSFET). The shape of the device is pictured in Fig. 23.

The device has a 0.2 lm channel. The source and drain depths are 0.1 lm and the contact at the gate is
0.15 lm. The distance between the gate and the other two contacts is 0.025 lm. The lateral subdiffusion of
the source and the drain region is about 0.05 lm. The gate oxide is 0.15 lm long and 20 nm thick.

The doping concentration is
nDðxÞ � nAðxÞ ¼
nþ ¼ 1017 cm�3 in the nþ regions;

�p� ¼ �1014 cm�3 in the p region

(

with abrupt junctions.
Fig. 23. Schematic representation of a bidimensional MOSFET.



Fig. 24. Stationary solution for the electron density in MOSFET (1017 cm�3) for VDS = 1 V and VDG = 0.8 V.

Fig. 25. Stationary solution for the electron energy in MOSFET (eV) for VDS = 1 V and VDG = 0.8 V.

V. Romano / Journal of Computational Physics 221 (2007) 439–468 461
At variance with MESFET, there are different built-in potentials we explicitly take into account by using
the simple model
UD
b ¼ US

b ¼
kBT L

e
ln

nþ
ni



at drain and source,
UB
b ¼ �

kBT L

e
ln

p�
ni
at bulk contact. ni is the intrinsic electron concentration (1010 cm�3).
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If the reference axes are chosen parallel to the edges of the device. The silicon part of the MOSFET is rep-
resented by the numerical domain
F

½0; 0:4� � ½0; 0:4�

and at the top of the silicon part the silicon oxide domain is
½0:125; 0:275� � ½0:4; 0:42�;

where the length is in lm.

The regions of high-doping n+ are the subset
½0; 0:1� � ½0:35; 0:4� [ ½0:3; 0:4� � ½0:35; 0:4�:

A uniform mesh of 64 · 64 grid points has been used.
We have assumed ohmic contacts on the source, drain, gate and bulk base contacts, homogeneous Neu-

mann conditions on the remaining part of the boundary. The surface charge at the oxide interface is neglected
and the continuity of the electric potential and electric field is imposed. The values of density and energy at the
interface are obtained by the interior grid points with a linear interpolation in the direction orthogonal to the
boundary.

In order to reach the desired bias, we have needed to resort to a continuation method on applied potential.
First, we iterate with respect to the difference of the built-in potential between drain and bulk contacts, keep-
ing at zero VDS. Then we iterate with respect to the drain–gate potential and finally we increase the drain–
source potential.

The 2D solution of the MEP model is plotted in Figs. 24–28 for VDS = 1 V and VDG = 0.8 V. All the main
features of the electron dynamics are well described, in particular the charge accumulation beside the oxide
and the pronounced depletion at the drain contact due to the strong electric field (a similar result was been
obtained in [5], Fig. 26). We note an effect of heating in the bulk.

Again the density current presents a singularity at the first edge of drain and therefore we evaluated the
current by considering, as for MESFET, the regularization from the interior (see Fig. 29). The characteristic
curves for several VDG are shown in Fig. 30.
ig. 28. Stationary solution for the y-component of the electric field in MOSFET (V/lm) for VDS = 1 V and VDG = 0.8 V.



Fig. 30. Drain current ID (A/cm) for VDG = 0.5, 0.8, 1, 1.2, 1.4 V. The current increases as VDG increases.

Fig. 29. y-Component of the density current (mA/lm2) at y = 0.4 lm. The dashed line is the density current given by (52), the continuous
line is the regularization from the interior given by (53). Note the singularity at the source for x = 0.3 lm.
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7. Conclusions and Acknowledgments

The MEP energy-transport model for charge transport in semiconductor used in this article is free of any
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robust and guarantees accurate current conservation.
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Appendix A. Summary of the closure relations

In Table 3 we report the values of the physical parameters used in the simulations. Moreover for the sake of
completeness we summarize all the functions entering in the constitutive equations (5) and (6). For more
details, see [2–4].

Concerning the quantities U, F and G, one has
Table
Values

me (g)
m*

TL (K)
q (g/cm
vs (cm/
Nd (eV
a (eV�

�r
�rO

�0 (C/V
U ¼ 2

3d0

Z 1

0

½Eð1þ aEÞ�3=2 expð�kW EÞdE; ð54Þ

F ¼ 2

3m�d0

Z 1

0

expð�kW EÞE½Eð1þ aEÞ�3=2

1þ 2aE
dE; ð55Þ

G ¼ 1

m�d0

Z 1

0

expð�kW EÞ 1þ 2ð1þ aEÞ
3ð1þ 2aEÞ2

" #
E3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aE
p

dE: ð56Þ
where kW(W) is the expression of the Lagrangian multipliers relative to the energy. It depends only on W and
it is obtained by inverting the relation
W ¼
R1

0
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1þ aEÞ

p
ð1þ 2aEÞ expð�kW EÞdER1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1þ aEÞ

p
ð1þ 2aEÞ expð�kW EÞdE

:

Note that U, F and G depend only on W as consequence of the fact that kW is function of W alone.
The production terms are the sum of the term due to the elastic scatterings (acoustic phonon scattering) and

that due to inelastic phonon scatterings. Therefore the production matrix C = (cij) is given by the sum
C = C(ac) + C(np).

Concerning the acoustic phonon scattering, the contribution to the energy balance equation is zero while
the production matrix CðacÞ ¼ ðcðacÞ

ij Þ can be written as C(ac) = A(ac)B. The coefficients bij of the matrix B are
given by
3
of the physical parameters

Electron rest mass 9.1095 · 10�28

Effective electron mass 0.32me

Lattice temperature 300
3) Density 2.33

s) Longitudinal sound speed 9.18 · 105

) Acoustic-phonon deformation potential 9
1) Non-parabolicity factor 0.5

Si relative dielectric constant 11.7
SiO2 relative dielectric constant 3.9

lm) Vacuum dielectric constant 8.85 · 10�18
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b11 ¼
a22

D
; b12 ¼ �

a12

D
; b22 ¼

a11

D

with
a11 ¼ �
2p0

3m�d0

; a12 ¼ �
2p1

3m�d0

; a22 ¼ �
2p2

3m�d0

; D ¼ a11a22 � a2
12;

dk ¼
Z 1

0

Ek
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1þ aEÞ

p
ð1þ 2aEÞ expð�kW ð0ÞEÞdE; k ¼ 0; 1; . . .

pk ¼
Z 1

0

½Eð1þ aEÞ�3=2
Ek

1þ 2aE
expð�kW ð0ÞEÞdE; k ¼ 0; 1; . . . :
The coefficients of the matrix A(ac) read
aðacÞ
11 ¼

Kac

d0

Z 1

0

E2ð1þ aEÞ2ð1þ 2aEÞ expð�kW EÞdE; ð57Þ

aðacÞ
12 ¼

Kac

d0

Z 1

0

E3ð1þ aEÞ2ð1þ 2aEÞ expð�kW EÞdE; ð58Þ

aðacÞ
21 ¼

Kac

m�d0

Z 1

0

E3ð1þ aEÞ2 expð�kW EÞdE; ð59Þ

aðacÞ
22 ¼

Kac

m�d0

Z 1

0

E4ð1þ aEÞ2 expð�kW EÞdE; ð60Þ
where
Kac ¼
8p

ffiffiffi
2
p
ðm�Þ3=2Kac

3�h3
; Kac ¼

kBT LN2
d

4p2�hqv2
s

:

Concerning the non-polar phonon scattering the production term of the energy balance equation is given by
CW ¼

P6
A¼1CW A , where for each valley
CW A ¼
3

2

Knp

d0

X
�

nB þ
1

2
� 1

2

� �
exp � �hxnp

kBT L

� kW �hxnp

� �
� 1

� �
g� ð61Þ
with
g� ¼
Z 1

�hxnpHð1�1Þ
EN�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1þ aEÞ

p
ð1þ 2aEÞ expð�kW EÞdE; ð62Þ

N� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE� �hxnpÞ½1þ aðE� �hxnpÞ�

q
½1þ 2aðE� �hxnpÞ� ð63Þ
and
Knp ¼
8p

ffiffiffi
2
p
ðm�Þ3=2Knp

3�h3
; Knp ¼ Zf

ðDtKÞ2

8p2qxnp

:

H is the Heaviside function
HðxÞ ¼
1 if x > 0;

0 otherwise:

�

The coefficients of the production matrix CðnpÞ ¼ ðcðnpÞ
ij Þ are given by cðnpÞ

ij ¼
P6

A¼1cðnpÞ
Aij

. For each valley one has
C(np) = A(np)B, where the matrix A(np) has components
aðnpÞ
11 ¼

Knp

d0

X
�

nB þ
1

2
� 1

2

� �Z 1

�hxnpHð1�1Þ
N�E

3=2ð1þ aEÞ3=2 expð�kW EÞdE; ð64Þ



aðnpÞ
12 ¼

Knp

d0

X
�

nB þ
1

2
� 1

2

� �Z 1

�hxnpHð1�1Þ
N�E

5=2ð1þ aEÞ3=2 expð�kW EÞdE; ð65Þ

aðnpÞ
21 ¼

Knp

m�d0

X
�

nB þ
1

2
� 1

2

� �Z 1

�hxnpHð1�1Þ
N�

E5=2ð1þ aEÞ3=2

1þ 2aE
exp �kW E

� 	
dE; ð66Þ

aðnpÞ
22 ¼

Knp

m�d0

X
�

nB þ
1

2
� 1

2

� �Z 1

�hxnpHð1�1Þ
N�

E7=2ð1þ aEÞ3=2

1þ 2aE
expð�kW EÞdE: ð67Þ
The coupling constants and the values of the phonon energy for each valley are reported in Table 4 [32].
In order to speed up the computation all the integrals giving the expression of U, F, G, CW and cij have been

evaluated with standard Gaussian quadrature formulas and tabulated versus the energy W. In the numerical
code the needed vales of U, F, G, CW and cij are reconstructed via interpolation.
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[25] A. Jüngel, Quasi-Hydrodynamic Semiconductor Equations, Birkhauser, 2001.
[26] D.L. Scharfetter, H.K. Gummel, Large-signal analysis of a silicon read diode oscillator, IEEE Trans. Electron Device ED-16 (1969)

64–77.
[27] A.M. Anile, N. Nikiforakis, V. Romano, G. Russo. Discretization of semiconductor device problems (II), in: Handbook of Numerical

Analysis, vol. XIII. Special Volume: Numerical Methods in Electromagnetics, Elsevier, North-Holland, Amsterdam, 2005 (Chapter 5) .
[28] M. Lundstrom, J. Guo, Nanoscale transistor: device physics, modeling, and simulation, Springer, New York, 2006.
[29] J.W. Jerome, C.-W. Shu, Energy models for one-carrier transport in semiconductor devices, in: N.M. Coughran, J. Cole, P. Lloyd,

J.K. White (Eds.), Semiconductors Part II, The IMA volumes in Mathematics and its Applications, 1994, pp. 185–207.
[30] S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer, Wien, New York, 1984.
[31] I.M. Gamba, Asymptotic behavior at the boundary of a semiconductor device in two space dimensions, Ann. Mat. Pura Appl. 163

(1993) 43–91.
[32] C. Jacoboni, L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with application to

covalent materials, Rev. Mod. Phys. 55 (1983) 645–705 .


	2D numerical simulation of the MEP energy-transport model with a finite difference scheme
	Introduction
	The MEP energy-transport model in the Kane dipersion relation case
	The numerical method
	Discretization in one space dimension
	Discretization in two space dimension

	Simulation of a n+-n-n+ silicon diode
	Simulation of a 2D silicon MESFET
	Simulation of a 2D silicon MOSFET
	Conclusions and Acknowledgments
	Summary of the closure relations
	References


